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Collapse in conical viscous flows 
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Institute of Thermophysics, Novosibirsk 630090, USSR 

(Received 12 October 1988 and in revised form 21 September 1989) 

A class of steady conically similar axisymmetrical flows of viscous incompressible 
fluid is studied. The motion is driven by a vortex half-line or conical vortex in the 
presence of a rigid conical wall or in free space. The dependence of the solutions on 
parameters (say, the vortex circulation) is analysed. At some finite parameter values 
the solutions lose existence, i.e. a flow collapse takes place. This is correlated with the 
appearance of a sink singularity at the symmetry axis. Analytical estimates of the 
critical parameter values are performed, together with numerical calculations of 
bounds on the solution existence region in parameter space. 

Asymptotic analysis of the near-critical regimes shows that a strong axial jet 
develops. The jet momentum becomes infinite at the critical parameter value and a 
singularity occurs. These paradoxical features seem to be typical of conically similar 
viscous flows. Reasons for the paradox and ways of overcoming it are discussed. 
Solution non-uniqueness and a hysteresis phenomenon are found in the Serrin 
problem. Possible applications of the results to model some geophysical and 
astrophysical phenomena are outlined. 

1. Introduction 
Here we shall deal with a class of conically similar solutions of the NavierStokes 

equations. In this class, the velocity field is inversely proportional to the distance 
from the origin. Investigation of the class has a rather long and interesting history. 
The two-dimensional case was first studied by Jeffery (1915) and Hamel (1916). A 
variety of non-trivial features, such as non-uniqueness of steady solutions and the 
impossibility of divergent flow everywhere, was found when the Reynolds number 
was sufficiently large. 

Generalization of the class to the three-dimensional case was done by Slezkin 
(1934). Then Landau (1944), Yatseev (1950) and Squire (1952) found exact solutions 
for the class. With the exception of the Landau jet, there were some difficulties in the 
interpretation of the other solutions. Because of the unusual properties of the 
solutions, the discussion has been continued up to the present (Schneider 1981, 1985; 
Goldshtik & Shtern 1987, 1988, 1989). The most intriguing property seems to be a 
loss of solution existence at  some parameter value, due to the appearance of a 
singularity. 

This effect was first found, and mathematically proved, in a problem on the 
interaction between a line vortex and a plane wall (Goldshtik 1960). When a 
circulation value increases, the axial and angular momenta are concentrated near the 
symmetry axis and a t  a finite circulation value a regular solution of the initial 
problem loses its existence. 

Serrin (1972) has generalized the problem, allowing a logarithmic singularity of the 
longitudinal velocity at the symmetry axis. If a parameter P characterizing the 
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logarithmic singularity is chosen in a special way, then the solution may be continued 
up to an arbitrarily large value of circulation I',. Serrin has calculated the solution 
existence boundary in the plane (P, rJ. Here it is found that the Serrin problem has 
more than one solution in some parameter subregion. Further, it  is shown that a part 
of the Serrin boundary (for P > 1) correlates with the loss of existence due to the 
appearance of the sink singularity, but the other part (for P < 1) corresponds to 
merging and annihilation of two regular solutions of the initial-boundary problem. 
The second solution, having a two-cell flow structure, also loses its existence at  lower 
P values due to singularity appearance. The problem is generalized to the case of a 
conical wall with arbitrary angle. 

The collapse phenomenon is inherent in the Squire solution and its generalization 
for swirling flows (Goldshtik 1979; Yih et al. 1982). Squire interpreted his solution as 
a jet emerging from a hole in a plane wall. But some theoretical (Schneider 1981, 
1985) and experimental (Zauner 1985) results testify that this interpretation is 
wrong. Here, the Squire solution is considered as a jet produced by the motion of 
plane matter. For example, if water flows down into a central sink placed near its 
(horizontal) surface, then air (which is above water) is entrained and forms a jet flow, 
which corresponds to the Squire solution far from the sink. Such an interpretation 
means, as follows from the solution, that a t  some finite strength of the sink, the jet 
momentum becomes infinite and the regular solution loses existence. This feature is 
conserved under generalization to swirling flows bounded by a conical surface, as 
follows from results of Goldshtik (1981), and Yih et al. (1982), together with the 
appropriate interpretation. In this work the solution existence bound is calculated 
and improved analytical estimates for it are obtained. The limit transition when the 
cone angle tends to zero is analysed too. Some speculations are presented concerning 
possible application of these solutions to model a driving mechanism of recently 
observed astrophysical jets (Lada 1985). 

One may find additional information on the conically similar solutions in 
Goldshtik (1981), Pillow & Paull (1985) and Paull & Pillow (1985a, b) .  The existence 
loss due to flow collapse has also been found in MHD problems (Sozou 1971; 
Boyarevich et al. 1985). Obviously, a real flow must change before the singularity 
occurs, most likely becoming turbulent. This may cause another interesting 
phenomenon - a bifurcation of self-swirling regimes (Goldshtik & Shtern 1988). A 
number of results on conical viscous flows are reported in the monograph by 
Goldshtik, Shtern & Yavorsky (1989). 

Here only the laminar steady axisymmetrical regimes are studied. The governing 
system of ordinary differential equations is derived and the applied boundary 
conditions are formulated in $ 2. A possibility of singularity appearance and its 
consequences are considered in $3. In $4 the inner and outer asymptotic expansions 
for near-critical solutions are constructed, and analytical estimates are made for 
solution existence boundaries in a parameter space. The numerical calculation results 
of these boundaries, some limit transitions, and velocity distributions are reported in 
$5. Moreover, solution non-uniqueness in the Serrin problem is shown. Ways of 
overcoming the paradox and possible applications are discussed in $6. In the 
conclusion ($7) the main results are summarized. 
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2. Problem formulation 

representation 
We shall consider here steady solutions of the Navier-Stokes equations having the 

Here ( r ,  0,p) are spherical coordinates; T is the distance from the origin; 0 is the 
angle between the radius vector and the positive z-axis; p is the angle about the z- 
axis; vl,vo,vp and p are the velocity components and pressure; y,q, r are 
dimensionless functions ; the prime denotes differentiation with respect to x. 
Substituting (2.1) in the Navier-Stokes equations, we obtain after some simple 

transformations the system of ordinary differential equations 

( l - 2 2 ) r  = y r ,  (2.2) 

(2.3) (i-22)2y~v-4x(i-x2)y”’ = 2 r r + i ( 1  -z2) (y2)~rr. 

When their solution is found, the pressure is determined with the help of the 
expression 

(2.4) 
1 2 I/ Y 2 + P  

q = ’(1 2 - 2 2  )Y”’-xY”-r(Y 1 -2(1-x2)’ 

It is convenient to introduce a function F ( z )  satisfying 

P‘” = 2 r r (  1 - x y  (2.5) 
with some relevant boundary conditions. Then after division by (1 -x2) equation 
(2.3) may be integrated three times, with the result 

( 1 - 2 )  y’+2zy-+J2 = F(x). (2.6) 

Using the transformation 

y = -2(l-X2)U/U 

u”+P(x)[2(1-z2)2]-1 u = 0. 

we find from (2.6) that 

Now boundary conditions are to be formulated. A pair from the following 

W denotes a rigid conical wall at z = x,. The adherence conditions to be fulfilled 
boundaries (W, FA, CVB, VL) will be used. 

there are 

FA denotes a free half-axis at x = - 1.  There the regularity demands are 

Y(X,) = y/(x,) = r(z,) = 0. (2.9) 

y(-1) =I-(-l) = o ,  ly’(-l)l <a. (2.10) 

y(x,) = 0, ~(2,) = r,, (1 -xc) y//(x,) = -A.  (2.11) 

CVB denotes a conical vortex boundary at  x = 2,. There we shall use the conditions 

The first condition (impermeability) means that the boundary consists of 
streamlines, so that the normal velocity component equals zero. The second 
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condition defines the azimuthal velocity value, and the third condition defines the 
surface radial friction. Indeed, for this component of the stress tensor we have 

) pv2 [(1-x‘)yN+2y]. 
a vg lav, r--+-- =- 
ar r r a e  r2sinB 

Multiplying -rr8 by r sin 0 cos 8 and integrating with respect to cp, we produce the 
axial component of the friction force per unit length of the symmetry axis, which 
drives the radial fluid motion, 

Fz = 2nz,( 1 + 2,) Apv2 r- l .  

Thus, the independent parameters fl and A are characteristics of fluid motion 
sources acting at  the cone surface x = x,. 

VL denotes a vortex half-line placed at  x = 1. It may be considered as the limiting 
case of CVB, when x,+ 1 but the r1 and A values are conserved. In this case, y(z) 
has the representation, near x = 1, 

y = -Atlogt[l+o(l)], t = 1-x, 

y‘ = Alog t [ l+~( l ) ] ,  y“ = -At-’[1+0(1)], 

where o( 1) means any continuous function oft, satisfying the condition o( 1) --f 0 when 
t + O .  Therefore, the boundary conditions at the vortex line are (Serrin 1972) 

c 

y( l )=O,  r ( 1 ) = r l ,  lim(1-x)y”(x)=-A. 
x+1 

(2.12) 

If A + 0, then along the axis, fluid is driven by the force 

F, = 4n Apv2 r-l (2.13) 

acting per unit length of the axis. 
In formulating conditions (2.12), Serrin used different parameters : 

k = + r l ,  P =  1+4Aq2.  (2.14) 

The case A = 0 studied by Goldshtik (1960) allows a simple physical interpretation. 
One may think of the motion as driven by rotation of a thin rigid cylinder (a needle). 
When A 4 0, the vortex half-line (and a conical vortex too) may be considered as 
a (turbulent) core of an atmospheric tornado (Serrin 1972). The vertical motion of the 
tornado core may be caused by the buoyancy force, for example. 

The conditions for r1 and y induce the consequent conditions for F, by using (1.6) 
and its first derivative, namely 

(2.15) (1 - x2) y” + 2y - yy’ = F ( x )  ; 

in particular, in case VL we have 

F(1) = 0, F’(1) = -2A. (2.16) 

3. Possibility of loss of solution existence 
It is necessary for the existence of a regular solution y(z) that function V(z) has no 

zeros in the interval of x being considered. Indeed, as follows from (2.7), a zero of U(x)  
means a pole of y(x). In the case of a slow (creeping) motion the solution obviously 
exists. But with motion intensity increase, a pole x = xp of function y(z) may 
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approach the interval and penetrate into it, passing through x = - 1 or x = 1 
(Goldshtik 1960). Let, for instance, the problem interval be [zw, 13. Here we shall 
consider F ( x )  as an arbitrary continuous function satisfying conditions (2.16). Then 
U(x)  may be found as a solution of the initial-value problem by integration of (2.8) 
using the conditions 

(3.1) U(X,) = 1, V(z,) = 0. 

The first condition (normalization) is formulated without any loss of generality, as 
according to (2.7) U(x) is determined up to an arbitrary numerical factor. The second 
condition (3.1) follows from (2.7) and (2.9). When F = 0, which is correct at r, = 
A = 0, we have U E 1. Owing to continuity, if Ir,l and (A1 are small enough, then xp is 
placed (if it exists) far from the interval [xw, 13. Zeros of U(x)  cannot be generated 
inside the interval owing to a tangent bifurcation. Suppose the tangent situation 
takes place at point x = zp. Then U(x,) = U'(zp) = 0, and from (2.8) it follows that 
U = 0, which contradicts (3.1). Thus, a zero of U(x) may penetrate into the interval 
only by passing through x = 1. To know what happens in this case, let us study 
solution features near x = 1. According to conditions (2.16), F ( x )  has the structure 

F = 2At [l +o(l)] ,  

and therefore equation (2.8) may be rewritten in the form 

U"+A(4t)-'[l+o(l)] u= 0. 

Its general solution has at small t the representation U = B, U,+B, U,, where 
U, = t-iAt2 [ l+o( l ) ] ,  U, = 1-&4t(lnt-l)+t*o(l). When a zero of U(x) passes 
through x = 1, the value of B,, being a function of parameters r, and A ,  becomes 
zero. Hence at  xp = 1 we have U = B, U,  and according to (2.7) 

y = 2( l+x)+o( l ) .  (3.2) 

Thus, in the critical situation the zero z = 1 and the pole x = zp of function y(z) 
merge, and y(x) has the finite value y(1) = 4. As at subcritical parameter values 
y(1) = 0, the existence loss is preceded by the generation of a boundary layer. This 
layer corresponds to a strong upward jet. The jet attracts ambient fluid and in the 
limit a sink is formed at  the axis. The sink strength is independent of parameter 
values and equals 8 av per unit length of the axis. (If the pole x = x p  passes through 
z = - 1 ,  t h e n a t x p = - l  onehasy( - l )=-4 . )  

Such a singularity appears in the Squire solution at the free axis, in the 
needle-wall interaction problem (Goldshtik 1960) and in the Serrin (1972) problem 
at the line vortex, as will be shown below. Though the initial boundary conditions are 
different in these problems the possible additional singularity at the axis is the same, 
and it is the sink. The appearance of the sink means loss of existence of the initial 
problem solution. If the flow region does not contain the symmetry axis, being 
bounded by two cones, then the singularity may not occur at any finite parameter 
values (Goldshtik & Shtern 1987). 

To find the parameter values a t  which the singularity occurs, it is convenient to 
use the asymptotic expansion method. 

4. Asymptotic analysis 
4.1. Inner expansion 

First, we consider A = 0. In this case y'( 1) is bounded in the subcritical situation, but 
when xp decreases and approaches 1 then y'(l)+-co. Introducing the small 
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parameter 6 = - l/y’(l) and the boundary-layer variable 7 = (1 - Z ) / E ,  we use them 
in (2.6) with s+O. The right-hand side limit is zero from conditions (2.16). Then 
equation (2.6) is decoupled from the whole system in the boundary-layer 
approximation and takes the form 

7 ~ ;  = yi -&yT 9 yi (0) = 0,  

where yi is the leading term of the inner expansion of y, and the prime denotes 
differentiation with respect to 7. Its  solution is 

yi = 47/(4 + 7) .  (4.1) 

This coincides with the Schlichting (1965) self-similar solution for a submerged round 
jet. As v-fm one has yi+4, in accordance with the result of $3. Similar 
transformation of (1.2) together with (4.1) yields 

= - 2 r y ( 4 + 7 ) ,  r,(o) = r,, Iri(OO)l < 00. 

Its  solution ri = 4r,/(4+7) coincides with the solution found by Zubtsov (1984). 
In  the case of A + 0, the value y’( 1) is infinite a t  subcritical parameter values too. 

Hence, the small parameter must be chosen in a different way, for instance 6 = xp - 1.  
Nonetheless, the leading terms of the asymptotic expansion yi, ri preserve their 
form, and the logarithmic singularity is reflected in the following terms. 

The Schlichting solution (4.1) serves as the universal asymptotic part for all cases 
of singularity appearance in the conical class, i.e. for swirling or non-swirling flows, 
for the free axis (FA) and the vortex half-line (VL). In the free-axis case, the 
circulation is ri = $r,yi = r17/(4+v) .  This result may be checked explicitly. 

Naturally, the outer expansion is not universal and each case must be considered 
separately. 

4.2. Outer expansion in the case of the free axis 

The problem of the free conical vortex is formulated in the region - 1 < x < 2, using 
boundary conditions (2.10), (2.11). From (2.6), (2.7) we obtain the conditions for P(x )  
as 

F(  - 1 )  = sl( - 1 )  = 0, F’(x,) = - (1  +x,)A. 

Then from (2.5), with the help of easy but rather bulky transformations, we have 

F ( x )  = TT dt 

(1 - x + 2x,) -I@( 1 + x)2- (xc-4(1 +x)(r.-G) . (4.2) 
l + x  -If - 
1 +x, 2( 1 + xc)( 1 - 2) 4 1  

One may check (4.2) by direct differentiation. The main part of the outer 
expansion for the circulation is trivial: T,,(x) = r,. Indeed, it satisfies equation (2.2) 
and condition (2.11). Further, it  follows from (2.2) that 

r ( x )  = r ( z , ) e x p  { - I c y ( t ) ( l - t 2 ) - l d t  

In  the critical situation, when y( - 1) = -4  and the integral becomes singular, one 
must have T(z , )  = 0 and therefore r ( x )  = 0. Substituting r= r, in (4.2), we 
produce the outer form for F ( x ) ,  

l + x  
1 +x, F,(x) = -$q- (1--+222,)-$4(1+x)2. 
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The equation for the leading term of the outer expansion, yo(%), coincides with (2.6) 
after replacing F by Fo. Introducing U,, similar to (2.7), we reduce the problem to the 
linear one 

C( 1 - x + 22,) + 2 4  1 + x,)( 1 + 2) U; - u, = 0, 
8(1+ x,)( 1 + x ) ( ~ - x ) *  (4.3) 

U,(X,) = 1, UL(X,) = 0, %(-l) = 0. 

The equation and the first two conditions may be considered as an initial-value 
problem. The third condition gives the relation between rl and A at the solution 
existence boundary. 

If A > -G [2(1 +x,)]-’, then Fo(x) < 0, U” 2 0 in the integration interval, so that 
the condition V,( - 1) = 0 may not be fulfilled. Therefore existence loss is possible 
only when the force acting on fluid from the cone surface is directed towards the 
origin and is large enough. 

If A < -c[2(1 +x,)]-l, then Fo(x) changes its sign inside the interval ( -  l ,xc) at 
2 = xo, where 

(4.4) 
1 +x, 
1 + s  ’ 

2,=-1+2- s = -2Ar;2(1+xc). 

When s runs from 1 to 00, x, varies from 2, to - 1. In this case, it is useful to rewrite 
(4.3) in the more compact form 

and as the integral equation 

At  the critical parameter values, U,( - 1) = 0, U,(xo) > 0. In the interval (x,, x,), the 
function U,(x) increases monotonically and UE(s) < 0, so there are bounds 

x-x 
0 < u,(x) < 1. 
x, - 20 

Substituting 2 = x, in (4.6) we have 

from which 

Calculating the integral we obtain the estimate 

where 
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On the other hand, using x = - 1  in (4.6) we have 

For the latter inequality we use U, 2 0 for - 1 < x < x, and U, < 1 for x, < x < 2,. 

As a result, we find the lower bound 

Formulae (4.7), (4.8), taking into account notations (4.4), (4.5), accordingly give 
the upper and the lower ( - A )  values at  fixed r,. In the limit x, + 1 both estimates 
coincide and take the form 

A = -2q. (4.9) 

When f, % 1 the linear terms on the left of (2.6) may be neglected and then we 
have 

y: w 4b(~ , -x) ( l  +x).  

The right-hand expression must be positive in the flow core, and so it follows that 
x, + x, when f, +a. Equation (4.4) yields s-t 1, so that the asymptotic relation at 
the existence boundary is 

A = - [2( 1 + 2JI-l. (4.10) 

This relation is in accordance with (4.9) and it reduces to (4.9) at x, = 1. 
The flow structure in the near-critical case when r, 4 1 includes the axial 

boundary layer (the Schlichting jet) with arbitrarily large velocity values, the 
potential core with velocities proportional to f,, and a viscous layer near the cone 
with a thickness - qg in which the radial velocity increases to a value - 4 
(Goldshtik & Shtern 1987). 

4.3. Outer expansion in the ca.se of the vortex line 
The problem of the interaction between the vortex half-line and the conical wall is 
considered in the region x, < x < 1, using boundary conditions (2.9), (2.12). 
According to (2.6), at the wall F(z,) = 0, and F ( x )  has to satisfy conditions (2.16) at 
the vortex line. Then from (2.5), following Goldshtik (1960) and Serrin (1972), we 
have after some transformations 

P(x) = C(x-xw)(1--5)-(l-x)p(l c d t  ( l - t 2 ) 2  

2, 

dt, (4.11) 
1-x 

where - xw L d t .  
q + 4 A  
2(1-xw) (1-2,)2 x,(l+t)2 

C =  
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One may check that F ( z )  defined by (4.11) satisfies (2.6) and the boundary 
conditions. The equation (2.2) may be transformed to the integral form 

z = y/(l -52 ) .  

Because y(1) = 4 in the critical situation, function z (x)  has, owing to (3.2), the 
structure 

where ( 1  - x)f(z) tends to zero when x + 1. Therefore, we have 

z = 2(1--s)-'+f(x), 

Because the singularity is strong enough, $( 1) is infinitely large. But for x < 1, $(x) 
is bounded, hence r = 0 in the interval x, < z < 1. This result is in accordance with 
the asymptotic analysis. Indeed, the inner expansion solution ri = 4r1/(4+7) tends 
to zero as ~ + m .  The theory of asymptotic expansion matching (Van Dyke 1975) 
demands that the outer approximation of the inner solution coincides with the inner 
approximation of the outer solution. This implies that r0 (1) = 0. Then from (2.2) and 
(2.9) it follows that I'o = 0. Using the result of (4.11), we find the outer form ofF(s),  

Po(%) = C(z-x,)(l-x), c = (q+4A)[2(l-xW)]-l. (4.12) 

Thus yo(.), the leading term of the outer expansion, must be found as a solution 

(4.13) 

of the problem 
(1-22)y:,+2330-&: = C(x-x,)(l-2), 

yo(%) = 0, !/,(I) = 4, y:(l) = 2-+(l-xw)C. 

The latter condition follows from (4.13) after differentiation and substitution of 
x = 1, yo = 4. Equation (4.13) has to be integrated as an initial-value problem from 
2 = 1 to x = x,, and constant C must be chosen so that y(xw) = 0. 

The problem (4.13) was considered by Serrin (1972), Goldshtik (1981) and 
Schneider (1981), but in different contexts. Schneider used the solution of (4.13) to 
describe an outer flow induced by a strong jet emerging from a hole in a wall. A self- 
similar solution of this problem does not exist. But when the jet momentum is high 
enough, the asymptotic expansions approximate satisfactorily the real rather 
complex flow structure (Schneider, Zauner & Bohm 1987). In our case, equation 
(4.13) provides the outer expansion of the exact solution of the Navier-Stokes 
equations. 

The upper and the lower bounds of C(s,) may be found analytically. Again, with 
the help of transformation (2.7) it is convenient to reduce the problem to the linear 
one, 

u = o .  C(x-x,) 
+ 2( 1 - x)( 1 + x)' O 

(4.14) 

Constant C must be found as the first eigenvalue of equation (4.14) under the 
conditions U:, (x,) = 0, G(1) = 0. Using the normalization &@,) = 1 we reduce the 
problem to the integral equation 

(4.15) 
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Putting x = 1 we find 

(4.16) 

As it is supposed that x = 1 is the first zero of U(x) a t  x 2 x,, we have Q(x) 2 0 
for x, < x < 1 .  It yields C > 0 from (4.16) and UE (2) < 0 from (4.14). Then UA(x) < 0 
on (xw, I) ,  as Ui(z,) = 0. On the other hand, Uo(z) < 1 from (4.15). Thus Uo(x) 
has bounds 

( l -x) / ( l -xw) < U0@) < 1.  

Using these bounds in (4.16) we obtain C, < C < Cu, where 

. (4.17) 
3+x, -1 

c -  2 

The asymptotic forms of (4.17) are C, = 4C, = 48( 1 - xw)-z as x, + 1 and C, = C = 
C, = (ilog (2/(1 +x,)))-l as xw+- 1.  When function C(x,) is found (it will be 
calculated further) the equation for the boundary of the solution existence region in 
the parameter space has the form 

G+4A = 2(1-xw)C(x,). (4.18) 

I n  the limit x, + - 1 we have the problem of the vortex half-line in a free space. 
So as C( - 1) = 0, equation (4.18) is reduced to +4A = 0 which formally coincides 
with (4.9), but the formulae have different meanings. Relation (4.18) means that the 
solution does not exist for + 4A > 0 owing to a sink singularity a t  x = 1,  whereas 
relation (4.9) means that the solution does not exist a t  c+4A < 0 owing to the 
singularity a t  x = - 1.  

+ 4A = 0 mpst be fulfilled. 
It can be shown (Goldshtik 1981) that  in this case the regular solution not only exists 
but moreover is a function of two independent parameters - say, the circulation rl 
and an axial flux of the kinematic momentum J .  Both the parameters may vary from 
-m to co. Parameter A is not independent, as A = -ac. The solution y,(z) = 
2( 1 +x)  of (4.13) a t  x, = - 1 (C = 0) is the limit of the problem of the free vortex half- 
line when J+m. 

The unique possibility for solution existence is that  

5. Numerical results 
5.1. Interaction between a rotating needle and a plane wall 

The problem is considered in the region x, = 0 < x < 1. The system of equations 
(2.2), (2.5), (2.6) with boundary conditions (2.9), (2.12) is calculated by the following 
algorithm. At x = 0 condition (2.9) is supplemented by rV(0) = a,  F'(0) = C,, 
F"(0) = -C, where a, C,, C, are supported by some tentative values. Further, 
P(0)  = 0 follows from (2.9). So we have the initial-value problem, which is integrated 
from x = 0 to x = 1. After integration we want conditions (2.16) with A = 0 to be 
satisfied. To this end, two of the three parameters a ,  C,, C, must be chosen in a special 
way. As a rule, a and C, have been found by shooting. Parameter C, remains free and 
determines implicitly r(1) = r,. The value of rl depends on C, monotonically. The 
critical value of Fl = r, is found by solving (4.13). For x, = A = 0 we obtain C = 
G,. = 15.2894, r. = (Be); = 5.5298 (see (4.12)). 

The solution structure a t  r, = 5.473 is shown in figure 1. This rl value corresponds 
to y(1) = -460.5 (according to Schlichting 1965, in a turbulent round jet the eddy 
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FIGURE 1. Distribution of (a) the dimensionless stream functions of the meridional motion (b)  the 
circulation for a near-critical regime for the problem of rotating needle-wall interaction. 1, inner; 
2, outer; 3, uniform asymptotic expansions. 

viscosity vt is produced so that rv,/vt x 460.5). For comparison the inner solutions yi, 
ri (see $4.1), the outer solution y,,(z) (which is the solution of (4.13) at C = Cl.) and 
the uniform asymptotic approximation y,(x) = y,(x) + yi(x) -4  used by Schneider, 
are also shown. Contrary to the case of the Schneider problem, yu may here be 
compared with the exact solution. 

Parameters a and C, are related to the wall shear stress though T+ = - u p 2  r-', 
T , . ~  = C, pv2 r+. 

Values of a and C, as functions r, are shown in figure 2. The azimuthal friction first 
increases with r,, but then decreases and returns to zero at r, = r.. It means that 
the rotating fluid motion ceases outside the vortex line. The results indicate that an 
interesting physical effect may be predicted. If one were to rotate a thin rigid 
cylinder which is normal to a wall, then at  small angular velocities the cylinder 
causes a swirl of the ambient fluid. But when the velocity becomes large enough, 
rotation decreases far from the cylinder and finally vanishes everywhere apart from 
a small region near the cylinder. Let us study this effect in more detail, replacing the 
vortex half-line by a conical vortex with a small angle. 

5.2. Interaction of a conical vortex with a plane wall 
This problem is considered in the region x, = 0 < x < x, < 1. We seek the solution 
of system (2.2), (2.5), (2.6) under boundary conditions (2.9), (2.11). The algorithm is 
the same as in $5.1, with the difference that integration runs up to z,, where the outer 
conditions are satisfied. Here two cases are studied : (a )  An adherence condition for 
the meridional motion, y'(z,) = 0. This corresponds to a special choice of A in (2.11). 
(b )  The absence of radial friction, i.e. y"(z,) = 0. This corresponds to A = 0 in (2.1 1). 

In both of these cases the condition y(x,) = 0 must be satisfied too. Some 
calculated results are shown in figure 2. The numerical results indicate that if 
x,  < 1, then solutions exist for all r, values. A t  r, < r, when x,  + 1, the solutions tend 
uniformly to the solution at  x, = 1.  When r, 2 r, we find that a+O, C, +GI* as 
x,  -+ 1. Consequently, the functions y (x ) ,  T(x) tend to yo(.) and zero. The transition 
dynamics for the y- and F-distributions are shown in figure 3 for r, = 20. The 
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FIQURE 2. Dependence of (a) azimuthal and (b) radial wall friction on the circulation for the cases 
of 1 ,  the needle and cones under the condition vT = 0 (2, x, = 0.99; 3, 0.999) and the condition 
av,/ae = u (52, x, = 0.99; 53, 0.999). 

20 

5I 
4 

3 

Y 

2 

1 

r 
10 

0 in ax 0 an t. e e 
FIGURE 3. Distributions for the condition vr = 0 at different cone angles. 1 ,  x, = 1 ; 2,0.99; 3,0.999. 

solutions approach the limit distributions rather slowly; y(z) a t  xc = 0.999 differs 
appreciably from y,(x) (curve 1). But the result of the limit transition seems obvious. 
The limit regime becomes independent of the r, value and coincides with the limit, 
when r-t r. a t  x, = 1. These results support the predicted effect of the rotating 
needle and the wall interaction. 

In both formulations of the boundary conditions, when x, + 1 then A --f 0. But if 
we consider the transition xc+ 1 with A = Const, then in the limit we obtain the 
Serrin problem. 

5.3. Solution non-uniqueness in the Serrin problem 

Serrin mentioned that he was unable to prove uniqueness. For the case A = 0 the 
uniqueness theorem has been proved for the whole solution existence region, i.e. for 
r, < r. (Goldshtik 1981). But here we show with the help of numerical calculations 
that for A < 0 and for r, large enough, the Serrin solution is not unique. 

We have already pointed out that  if A = 0, then fluid is driven by a force acting 
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FIGURE 4. Regime map in the Serrin problem. Curves 0 and 1 separate subregions of downward (A), 
two-cell (B) and upward (C) flow regimes, S is the curve corresponding to sink appearance on the 
vortex line, D is the curve corresponding to two smooth solutions merging. Figures denote the x9 
value for the respective curves (cone x = zs separates the cells). 

P 

along the symmetry axis, and its value per unit length is defined by (2.13). This force 
is an independent motion driver, and causes a flow even a t  rl = 0. The force may be 
considered as the mathematical model of a thin hot (upward) or cold (downward) jet 
in the near-axis region, which drives the ambient fluid. In the case of x,,, = rl = 0, 
the singularity occurs, when A increases through the value A = A ,  = = 7.6447. 

The regime map obtained numerically is shown in figure 4. For the sake of 
convenient comparison the Serrin parameters k = +TI, P = 1 +4Ac2 are used. The 
numerical algorithm is similar to that in $5.1, but now it is sufficient to choose only 
one parameter from a, C,, C ,  to satisfy y(1) = 0. The other two define, parametrically, 
values of rl and A .  

According to Serrin, the existence region is placed to the left of the boundary 
which consists of the line S for P > I and the curve D for P < 1. The region was 
subdivided by Serrin into three subregions A, B, C ,  separated by curves 0 and 1 in 
figure 4. The subregions correspond to different structures of the meridional motion 
(see sketches in figure 4). 

Our results agree with Serrin’s, but provide some new information about the 
features of the problem. On the line S, which is the ray k-2 = A;lP, the existence loss 
is caused by the appearance of the singularity. This mechanism has been studied in 
detail in the preceding part of the paper. But at  curve D the existence loss has a 
different nature. In  the hatched region of figure 4, two regular solutions exist for 
every k and P. At curve D these solutions, remaining regular, merge and disappear. 
One may think of subregion B as a sheet folded along line D, so that the dashed part 
is a continuation of B after folding. 

Ray S for P < 1 is the left boundary of the dashed region. There the second 
solution loses its existence owing to the singularity. In the dashed part of B the 
solutions also have the two-cell structure. There are two dashed curves in figure 4 and 
each of them corresponds to a fixed value xs, where x = xs is a cone separating the 
flow cells. Such curves are tangent to the boundary D, and at  the tangent point they 
pass from one sheet of subregion B to another. If one moves in the dashed region to 
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P 
FIGURE 5. The azimuthal friction versus the axial force a t  k = 10. Points 0, D, S indicate 
intersections of the curve k = Const with the same curves as those denoted similarly in figure 4. The 
dashed line shows the separating cone position. The dot-dash curve is the transformation of the 
solid one in the case of the vortex cone with x, = 0.999. 

ray S, keeping r, fixed, then xs increases and achieves the value 1 at S. Lines S and 
D meet at  the point r, = r,, P = 1, where curve D terminates. 

The correlation between a and P a t  a fixed circulation value r, = 20 (k-' = 0.01) 
is shown in figure 5. A part of the upper branch on the left of the point 0 relates to 
subregion A in figure 4, segment OD relates to the first sheet of subregion B, and DS 
relates to the second one. In  the interval Ps < P < Po the downward (upper branch) 
and two-cell (lower branch) regimes coexist. I n  the interval Po < P < PD a pair of two- 
cell solutions coexist. At rl = 20 we find P, = 0.08, Po = 0.44, PD = 0.48. 

At point S of figure 5, a tends to zero and xs becomes 1, and the sink singularity 
is formed on the symmetry axis. The latter may be avoided by changing the problem 
formulation. When the vortex cone x = x, = 0.999 is used instead of the vortex line, 
the results are shown by the dot-dash curve in figure 5. The upper part of this curve 
is very close to the solid line. One sees a typical hysteresis phenomenon. An example 
of the velocity distributions for the coexisting solutions is illustrated in figure 6. 

When I", increases, the y(x) value remains finite where y > 0, and JyI grows 
asymptotically proportional to rl where y c 0. For the two-cell solution in the 
interval 0 < x < x, the problem may be considered separately as the interaction of 
the conical vortex z, = xs and the wall x, = 0. At high r, values, a strong conical jet 
near the cone x = xs develops and in the limit r , + m  jumps in azimuthal and 
meridional velocities occur. The conical jet attracts a swirling fluid from the region 
near the axis and non-swirling fluid from the region near the wall. In as much as 
convection of momentum predominates over diffusion when I', B 1, the circulation is 
almost constant in the near-axis zone and rotation is practically absent in the near- 
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FIGURE 6. Distribution for the three coexisting solutions at k = 10, P = 0.3.1,2,3 correspond to the 
points 1, 2, 3 in figure 5. The solid curves are used for stable regimes and the dashed curves for 
unstable ones. 

wall zone. But if in the near-axis zone the flow has a potential limit when fl+co, 
then in the near-wall zone the flow does not tend to a potential one, because the 
velocity remains finite there, and the influence of viscosity is maintained. 

The potential limit in the whole region exists only for the downward regime. In this 
case it follows from (2.5) that F”’ = 0, because r(x) = Const. Using boundary 
conditions (2.16) and F(0) = 0 we obtain F(s )  = U x ( 1  -x). Neglecting linear terms 
in the left-hand side of (2.6) we obtain the potential solution for y(x) : 

y,(z) = -2{-Ax(l-z)}i  (5.1) 

Serrin (1972) has proved that the downward regimes exist for A < - lkl( 1 +log ILI). 
This inequality estimates from below the growth of ly,(x)l when rl-+co. 

Solution (5.1) satisfies y(1) = 0, but yk(x) has a stronger singularity at  x = 1 than 
the logarithmic one. Besides, y,(x) satisfies the impermeability condition at the wall, 
but yk(x) tends to infinity at x = 0. For rl % 1 it  causes the development of near-axis 
and near-wall boundary layers. In  the Serrin model the near-axis layer has no 
physical meaning. Let us consider the near-wall boundary layer. 

For rl % 1, equation (2.6) takes the form 

(l-x2)y’+2xy-$y = Mx(1-2). (5.2) 

y = - ( -U)fw,  7 = ( - 2 A ) b  

Introducing new variables 

and letting A +a, we obtain from (5.2) 

dw -- - q-iwz, w(0) = 0. 
drl 

(5.3) 

The solution of (5.3) may be explicitly expressed in terms of the Airy function, but 
it is simpler to find it numerically. The value of dw/dq attains a maximum equal to 
1.03 at 17 = 1.5 (curve 1 in figure 7) .  Thus, the boundary layer corresponds to a near- 
wall jet of width - IA1-i and the maximum velocity - IAIf. 
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dw ld l ]  
FIGURE 7. Radial velocity distribution in the near-plane boundary layer (r, $ 1) for 1, the Serrin, 

and 2, the free-vortex problems. 

c 
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xw 

FIQUBE 8. Critical value of the existence criterion versus the eonioal wall position in the generalized 
Serrin problem. The so,lid curve is found numerically, the dashed ones are analytical bounds (4.17). 
6 = [ (1-2,)(~+4.4)]~.  

When the wall is not the plane x=O,  but a cone, the regime map does not 
qualitatively change from the one shown in figure 4. I n  the typical case, ray S is 
defined by the equation 

where C(x,) is determined by solving the problem (4.13). 
This relation has been found numerically and is shown in figure 8. For the sake of 

a compact graphical representation a new variable is used : d = (1 -xw) [2C(x,)]? 
Dashed curves correspond to the analytical bounds (4.17). 

When x decreases, the angle between ray S and axis P in figure 4 grows and tends 
to when x,+-1. Curve D in the limit merges with the vertical axis and the 

kP2 = 2P[(1 -xW) C ( X ~ ) ] - ' ,  
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FIQURE 9. Regime map in the free-vortex problem, 2, = 0. Curve 1 is the existence boundary, its 
analytical estimates are shown by curves Y,, yC (Yih et al. 1982) and 6,,6, (this work). Curve 2 
separates the upward and two-cell regime regions. Curve 3 corresponds to the two-cell regime with 
e, = b. 

segment 0 < P < 1 of axis P .  When x, increases, ray S approaches axis P and 
coincides with it with xw+ 1. This limit corresponds to flow in a pipe driven by a 
screw motion of a thin coaxial cylinder. 

5.4. A free conical vortex 
The problem is considered in the region -1  < x < x,. The system (2.2), (2.5), (2.6) 
with boundary conditions (2.10), (2.11) is solved as follows. Integration runs from 
x = -  1 to x = x,. From (2.6), (2.10), (2.15) we have F( - 1) = F( - 1) = 0. Tentative 
values of P”( - I) ,  I-‘( - 1) and y’( - 1) are taken. Note that y’( - I )  may not be found 
from (2.6) and it is a free parameter. One of the parameters (usuallyF”( - 1 ) )  is chosen 
by shooting to satisfy y(x,) = 0. The other two define implicitly the values of rl 
and A .  

Bearing in mind possible geophysical and astrophysical applications, the case 
x, = 0 will be studied in more detail. The regime map is shown in figure 9. To 
compare with earlier results (Goldshtik 1981 ; Yih et al. 1982) the parameter q = y’(0) 
is used instead of A .  It characterizes the strength of the point sink in the plane 
x = 0. The solutions exist in the region placed on the left of curve 1. Dashed curves 
b, and b, correspond to analytical estimates (4.7), (4.8) (compare with the same ones 
by Yih et al.). 

Curve 1 has been found numerically as a result of solving the problem (4.3). In  this 
case q = q. = -$4-ic. At r, = 0 we have the Squire problem and q = 7.6727 
(Goldshtik 1981). When rl increases, then q grows and at  r, 9 1 there is the power 
asymptote q* N q. To show this we note that at  curve 1, equation (2.6) may, 
according to (2.5), (4.5), be written as 

(1-x*)y’+2xy-+y* = 2b(x-xo)(l+x). (5.4) 

When b-tm one must have xO+O for solution existence. Then in the flow core 
y x y,(x), where 

yJx) = - 2[ - bx( 1 + 4 1 3 .  (5.5) 
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One sees that yk (x) -+a with x + 0. Therefore, a boundary layer is formed near the 
plane x = 0. Introducing new variables y = - (2b)fw, 7o = -8(2b)b0, 
putting them into (5.4) and letting b + a  we obtain the following boundary layer 
equation : 
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7 = - (2b)*x, 

(5.6) 
dw _ -  - gw2-7++o, w(0)  = 0. 
dv 

When 7 $ 1 the equation has the asymptotic solutions w = (27);. If yo is chosen 
arbitrarily, then a solution of (5.6) asymptotes to w = - (27); as 7 +OO. But to agree 
with (5 .5)  it is required that w - (27); as 7 4 ~ 0 .  

For this 7o must be chosen in a special way. Calculations yield 7o = 1.2836. The 
velocity distribution near the plane is shown in figure 7 (curve 2). With the help of 
(4.4), (4.5) and (5.4) we find q. = y’(0) = -2bx0 = qO(2b)1, s = 1 ,  6 = +c and finally 
q. = 0.808 c. 

Because y,(x) does not satisfy the condition y( - 1 )  = -4, a near-axis boundary 
layer develops. Using new variables y = - w, 7 = 26(1 +x) in (5.4) and letting b- tco  
we have 

dw dw 
7- = w-+w’+tq, w(0)  = 4, - ( O )  =+. 

d7 d7 
(5.7) 

The latter equality follows from a regularity requirement at 7 = 0. The function 
w(7)  increases monotonically and, as 7 +a, has the asymptote w = (27); according 

Thus, for parameters I‘l and q corresponding to a point near curve 1 in figure 9, 
with r, & 1, the flow structure consists of (a )  the inner axial layer (the Schlichting 
jet) with width - (q*-q) and velocity - (q*-q)- l ,  (6) the outer axial layer with 
width - q2 and velocity c, (c)  the potential core with velocity - r,, ( d )  the near- 
plane layer with width - q i  and maximum velocity - 0. 

If r, is fixed and q decreases, then the axial jet becomes wider, the minimum in the 
radial velocity distribution appears a t  the axis, at some q the axial velocity changes 
its sign (curve 2 in figure 9), and a t  the lower q values, a reverse flow develops near 
the axis (see the sketch in figure 9 above curve 2). There is a conical surface x = zs 
separating the flow cells, and xs decreases together with q.  The typical curve where 
xs = Const (=  -0.707) is shown in figure 9 (curve 3), and an example of the velocity 
distribution in the two-cell flow is shown in figure 10. In this case r, is high enough 
that we see the asymptotic tendency, i.e. the near-plane boundary layer with the 
convergent flow, the divergent conical jet near 6’ = B,, and an almost step-like 
distribution of the circulation. In  the near-axis region rotation is practically absent 
and y x y’(l)(l  +x). In  view of y(x,) = 0, the flow in the region - 1 Q x < xs may be 
considered as an autonomous problem of the same class, if y’(x,) and T(x,) are known. 

Let us return to the regime map in figure 9 and note that when q tends to  zeTo the 
cone x = xs merges with the plane 2 = 0 and the flow becomes of one-cell structure. 
Near the symmetry axis, fluid moves towards the origin and then spreads away near 
the plane. The velocity distribution in this case is shown in figure 11 and a few 
streamlines of the meridional motion (i.e. the curves 1c. = vry = Const) are shown in 
figure 12. There is a swirling jet fan near the plane. Outside the jet (below the dashed 
line in figure 12) fluid rotation is practically absent. 

with maximum velocity - rl. Int,ensity of the near- 
axis rotation may be measured by the value of Y(-1). When r, increases, then 
y’( - 1) grows and asymptotically is proportional to 4, but Y( - 1) first grows and 

to (5 .5) .  

The fan jet has width - 
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FIGURE 10. Distribution of velocity components at  r, = 40.7, p = 103.2 (rs = -0.707). The 
parameters correspond to a point on curve 3 in figure 9). 
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FIGURE 11. The same as figure 10 but r, = 50, q = 0. (The parameters correspond to the 

vertical axis in figure 9.) 



502 

( 

cos I 

M .  A .  Goldshtik and V .  N .  Shtern 

r SI 

FIGURE 12. Meridional motion streamlines at I-', = 50, p = 0 (see figure 11). The numbers 1, 2,4 are 
the Stokes stream-function values in arbitrary units. On the dashed line w, = 0;  on the dot-dash one 
the distance from the plane z = 0 approaches the minimum. 

FIGURE 13. 
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Characteristics of the radial (y'( - 1)) and rotational (I"( - 1 ) )  motion 
versus the plane circulation a t  q = 0 (vertical axis in figure 9). 

0 25 50 
TI 

Characteristics of the radial (y'( - 1)) and rotational (I"( - 1 ) )  motion 
versus the plane circulation a t  q = 0 (vertical axis in figure 9). 

near the axis 

then decreases (see figure 13). Analytical estimates for r, % 1 (Goldshtik & Shtern 
1987) provide the approximate correlation 

rV( - 1) = 2.12dexp (-0.854). 

Non-monotonical behaviour of rV( - 1) has the same physical explanation as in the 
case of figure 2 (a) .  The vortex line (or cone) and the vortex a t  the plane both induce 
fluid flow towards the source of rotation. This prevents vorticity diffusion from the 
source. As a result, the circulation is locked in a boundary layer near the source. One 
may say that a self-focusing of the rotation occurs. If the circulation source is a plane 
(or a cone), then the boundary-layer thickness decreases asymptotically as c1 when 
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FIQURE 14. Summary picture of the solution existence boundaries in the parameter space. 
For comments see $5.5. 

r, +co, but in the case of the vortex half-line the thickness tends to zero a t  a finite 
value of r,. 

5.5. Summary of the numerical results 

All our results on the solution existence loss are summarized in figure 14. Both the 
cases of interaction between the vortex half-line and the conical wall (see the sketch 
on the left and surface S,) and the free conical vortex problem (the sketch on the right 
and surface S,) are represented. The parameter FA = - IAltsign ( A )  is used instead 
of A to make the diagram compact. 

Surfaces S, and S, are marked by the curve families 9 = Const (0, in, in, with the 
same symbols near the curves), r, = Const (0, 10, 20 on curves r0, r10, n o )  and 
A = Const (25,  0, -100 on curves ,425, AO, A-100). Curve 0 (9 = 0, r, = F A )  is 
common to S, and S,. 

The region of solution existence for the problem on the free conical vortex is to the 
left of surface 5,. At the parameter values corresponding to S,, a sink singularity 
appears on the free (lower) half-axis. Plane 9 = 0 is a boundary of the existence 
region too. There the sink appears on the upper half-axis. On curve 0, being the 
common part of the boundaries, a regular solution may exist. 

For the vortex-wall interaction problem the boundary is more complex. For A 
positive, solutions exist in the region to the right of S,. But for A < 0 (FA > 0) in the 
region contained between S, and surface D (the latter is shown only by its trace on 
plane r, = 20, see dashed curve D) two regular solutions coexist. At surface D, which 
is bounded by curves A0 and 0, the solutions merge and disappear. One of these 
solutions with a two-cell structure loses its existence, when a prsameter point 
touches surface S, from the left-hand side. The existence loss a t  surface D is not 
related to singularity appearance. Surface S, is the parameter set a t  which the sink 
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singularity is formed in the vortex half-line. Plane 19 = 0 is also on the existence 
region boundary. If r, and FA > r, are fixed, but the angle 9 of the conical wall 
decreases, then the sink is generated at  the lower half-axis in the limit 9+0. 

6. Discussion 
6.1. Ways of overcoming the paradox 

The phenomenon of vorticity concentration in thin layers and the formation of 
strong jets has a clear physical background. It consists in the opposite action of 
convection and diffusion and the predominance of convection at high velocity. But 
the fact that the layer thickness tends to zero and the jet momentum becomes infinite 
at finite values of parameters characterizing the motion drivers, i.e. what we call the 
collapse phenomenon, seems to be paradoxical. In real flows velocities remain, 
surely, bounded in this situation, and the paradox means that the mathematical 
models of these natural processes considered cease to be adequate. In this sense the 
problem of overcoming the paradox includes the study of what modification to the 
problem formulation is needed to re-establish solution existence. 

Certainly, all the conically similar solutions have a singularity at the origin. But 
in this context, that seems to be not important because the solution may be 
considered as the main part of an asymptotic expansion with respect to r/ro,  where 
ro is a scale length of some regularization near the origin. In the case of collapse the 
sink singularity is formed on a half-axis, i.e. arbitrarily far from the origin too. That 
is why we think the origin regularization may not serve as the main way of 
overcoming the paradox. 

There are three different cases of existence loss in these problems. The first is the 
generation of an additional singularity at the vortex line. The second is the merging 
of two smooth solutions. The third is the singularity appearance on the free half-axis. 

In the first case the paradox may be resolved in the same solution class. The vortex 
line is an idealization of some real source of motion, for example, a rotating needle 
or tornado core. It has been shown that it is sufficient to replace the vortex half-line 
by a narrow vortex cone, and then the solution exists at  any finite parameter values. 

Serrin (1972) suggested another way of avoiding the paradox. He introduced a new 
parameter P characterizing an additional logarithmic singularity at the axis, and 
then the following selection principle was claimed. At any fixed circulation value the 
parameter P is chosen as 1 (in this case the logarithmic singularity is absent) or, if 
it is impossible, then P is chosen to be as close to 1 as possible. But the physical 
reason for this selection is not clear enough. The vortex line in the Serrin problem 
serves as a source not only of the angular momentum but of the axial momentum too. 
Both the sources may be characterized by independent parameters, and each source 
may drive a fluid motion separately. The selection of the one-parameter solution 
family is not needed because replacing the vortex half-line by an arbitrary narrow 
cone leads to solution existence at any parameter values. Moreover, in some 
parameter subregion the solution is not unique. 

Now we turn to the second case -the existence loss caused by solution merging. 
This case is robust or structurally stable. The existence loss is preserved under a 
small modification of the problem formulation, and in particular on replacing the 
vortex half-line by a narrow vortex cone. What happens if one changes the 
parameters continuously, so that a marking point passes through curve D in figure 
4, for instance, when the circulation is fixed and P increases (figure 5 )  ? 

The answer becomes obvious after the vortex line - cone replacement. In the case 
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of the cone we have a well-known hysteresis phenomenon (figure 5 )  or the ‘fold 
catastrophe’ (Arnol’d 1984). If the vortex line problem is considered as the limit of 
the vortex cone problem, when x, tends to 1, then ray S for P < 1 in figure 4 may also 
be interpreted as a fold line. In this case the third solution is singular, with the axial 
sink reported in §§5.1,5.2. For x, < 1 the part of the ray S with 0 < P < 1 transforms 
into a regular fold line, and the other part of S (with P > 1) ceases to be the solution 
existence boundary. The fold curves D and S meet and disappear at the cusp point 
P = 1, rl = r.. This catastrophe may be physically meaningful, and it will be 
discussed further. 

In the third case, when the sink singularity happens at  the free half-axis, the 
paradox cannot be overcome or interpreted within the framework of the solution 
class studied. Singularity appearance at  an internal point of the region or, physically 
speaking, a viscous collapse of vorticity, seems itself to be an unusual and strange 
phenomenon. In some sense it is like a cumulative effect of jet collision. Here it is the 
case when one of the possible ways of overcoming the paradox is a singularity 
regularization at the origin. It is not excluded that at  supercritical parameter values 
the main term of an asymptotic expansion corresponds to slower decrease than r-l. 
Such a situation is usual for wakes. To test this conjecture a rather sophisticated 
mathematical analysis is needed. Another possibility is that the existence loss is 
preceded by instability and turbulence development. Instability seems to be quite 
probable, because the strong jets generated before the existence loss are usually 
unstable at low Reynolds numbers owing to inflection points of the velocity profile. 
Formulation of the stability problem for solutions of the conical class is still lacking, 
and it calls for a special study. A more simplified model approach has been used to 
avoid the existence loss in our recent work (Goldshtik & Shtern 1988, 1989). It is 
assumed that if the jet momentum exceeds a certain critical value then turbulence 
appears. The turbulence is taken into account using the Boussinesq model of eddy 
viscosity depending on x. It is shown that an appropriate choice of the function Y ( X )  

allows one to avoid the solution existence loss. In the variable-viscosity problem a 
bifurcation of self-swirling regimes (i.e. a turbulent vortex dynamo phenomenon) was 
found. Returning to the present problem, we conclude that, in the third case, to 
overcome the paradox is not easy. It remains an open problem and it seems that 
rather laborious analytical and numerical investigations are needed for its solution. 

6.2. Possible applications 
A physical interpretation of the vortex line and plane interaction problem as the 
simplest model of a tornado has been discussed in detail by Serrin (1972). Replacing 
the vortex half-line by a vortex cone with a small angle does not change the 
interpretation. But the results obtained here concerning the non-uniqueness and 
hysteresis indicate a probable mechanism for the sudden appearance and dis- 
appearance of strong localized atmospheric vortices. Under the same conditions two 
regimes may coexist which are stable to small perturbations. 

One of them (corresponding to the upper branch of the solid line in figure 5 )  is 
characterized by a downward meridional flow and a rather extended rotating 
motion, and the other (corresponding to the half-line a = 0, P > Ps at x, = 1 or the 
lower branch of the dot-dash curve at  x, = 0.999 in figure 5) is characterized by a 
strong upward jet and a localization of the rotation near the symmetry axis (compare 
distributions 1 and 3 in figure 6). The latter regime may be correlated with a large 
energy concentration in a small region that may cause catastrophic consequences. 
The intermediate steady solution (corresponding to the lower branch of the solid line 
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in figure 5 )  seems to be unstable. It belongs to a separatrix surface dividing the 
attraction basins of the stable solutions. 

If the circulation is fixed, then the axial force serves as a governing factor. This 
force may be caused by buoyancy when the core temperature differs significantly 
from the ambient one. For a cold core the force acts downward and the regime is one 
of downward flow. Gradual increase of the core temperature (corresponding to a 
point on the upper branch of the solid line moving to D in figure 5) may cause the 
sudden generation of a tornado (the point passing through D ‘falls’ onto the lower 
branch of the dashed-dotted curve). Now let the core temperature decrease. Then at 
some lower temperature (corresponding to the point of the dot-dash curve fold in 
figure 5 )  the tornado suddenly disappears, and the regime becomes downward. This 
leads to the idea that a tornado may be destroyed by producing a strong enough 
downward flow in its core. 

The problem of the free conical vortex also has some geophysical interpretation. 
When the circulation and the radial velocity are given at  the plane x = 0, the case 
may be considered as a model of air motion above a whirlpool. If the radial motion 
of water predominates, then a strong upward air jet is generated. But when the 
surface circulation is large enough, a reversal of the air axial motion takes place, 
producing a downward flow near the axis. Such a situation is dangerous not only for 
ships but for airliners too. 

The same solution family may model the opposite case, when a tornado placed 
over a water surface drives the ocean motion in the meridional structure shown in 
figure 12. This helps a large-scale mixing in the upper ocean layer, in addition to a 
turbulent transfer induced by wind waves. One more application of the Squire 
solution (without circulation) was reported by Wang (1971) to model a water flow 
induced by oil spread along the ocean surface caused by a tanker crash. 

Astrophysical speculations based on the free-vortex problem seem to be tempting. 
Recently a variety of jet-like flows has been observed in space (Lada 1985 ; Henricsen 
1986). The nature of the jets is an open question; moreover Lada calls these jets 
‘enigmatic’. The jets are observed near stars and other massive objects in their 
condensation stage, and are correlated with accretion disks (Konigl 1986). The disks 
are regions of higher density than that of the ambient molecular gas. The disk matter 
flows towards a mass centre because of the gravitational attraction. 

If the accretion disk is idealized as a material plane and the massive object aa a 
sink, then we have the Squire problem and its generalization for swirling flows. In 
this model the plane-matter motion drives two bipolar jets in an ambient medium 
with the help of viscosity. The jet may be arbitrarily strong even at rather slow disk- 
matter motion. Such an effect is a direct consequence of the Navier-Stokes 
equations. Suppose that at the first stage of the gravitational condensation the radial 
motion predominates over the rotational one. Then the bipolar jets may have a large 
axial momentum but a weak swirl velocity. This corresponds to a region near curve 
1 in figure 9. If the circulation is conserved and the sink strength decreases, then the 
jet velocity at  the axis falls from an arbitrarily large value (near curve 1) to zero (at 
curve 2). Further, the flow becomes a two-cell one, and when the sink strength 
becomes zero (i.e. the condensation is finished) the flow is reversed everywhere, and 
the rest of the disk mass and angular momentum are transported away by a near- 
plane fan jet. This may be correlated with a radial distribution of mass in planet 
systems and a rather complex circulation distribution in galaxies (Tayler 1978). 
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7. Conclusion 
Let us summarize the main results of the work. Two problems have been studied 

by analytical and numerical methods. The first concerns a flow driven by a vortex 
half-line or a vortex cone in the presence of a conical wall. The second concerns a free 
conical vortex. A common feature of these problems is loss of existence of the 
solution a t  some finite values of parameters characterizing the motion sources. 
Surfaces bounding the solution existence regions in parameter space have been 
found. The existence loss is caused by a sink singularity appearance on the symmetry 
axis (collapse) or by regular solution merging (hysteresis). This is classified into three 
cases. 

In the first case the additional sink singularity is formed at  the vortex line. It may 
be avoided by replacing the vortex half-line by a narrow vortex cone. In the second 
case three solutions coexist in some parameter subregion and hysteresis takes place. 
In the third case the singularity appears on the free half-axis, i.e. inside the fluid flow 
region. Overcoming and interpretation of the latter paradox remains an open 
question. 

Some speculations are discussed concerning possible applications of the results 
obtained to model such natural objects as tornadoes, whirlpools and astrophysical 
jets. 

R E F E R E N C E S  

ABNOL’D, V. I. 1983 Catastrophe Theory. Moscow University Prem, 80 pp. (English trans. R. K. 
Thomas, 1984, Springer.) 

BOYAREVICH, V. V., FREIBERQ, YA. ZH., SHILOVA, YE. I. -& SHCHERBININ, A. V. 1985 Electro- 
vortex Flow. Riga: Zinatne, 315 pp. 

GOLDSHTIK, M. A. 1960 A paradoxical solution of the Navier-Stokes equations. Appl. Mat. Mech. 
(Sov.) 24, 610-621. 

GOLDSHTIK, M. A. 1979 On swirling jets. Mech. Fluid Gae (Sow.) 1, 26-36. 
GOLDSHTIK, M. A. 1981 Vortex Flows. Novosibirsk : Nauka, 366 pp. 
GOLDSHTIK, M. A. & SHTERN, V. N. 1987 Induced jets and critical phenomena in viscous flows. 

GOLDSHTIK, M. A. & SHTERN, V. N. 1988 Conical flows of fluid with variable viscosity. Proc. R. 

GOLDSHTTK, M. A. & SHTERN, V. N. 1989 On a mechanism of astrophysical jets. Sov. Phye. Dokl. 

GOLDSHTIK, M. A., SHTERN, V. N. & YAVORSKY, N. T. 1989 Viscowr Flows with Paradoxical 

HAMEL, G. 1916 Spiralformige Bewegungen zaher Fliissigkeiten. Jber. D. Mat. Verein 25,334-360. 
HENRIGSEN, K. H. (4.) 1986 Proceedings of conference on jets from stars and galaxies. Can. J .  

JEFFERY, G. B. 1915 Two-dimensional steady motion of a viscous fluid. Phil. Mag. 29, 455465. 
KONIQL, A. 1986 Stellar and galactic jets: theoretical issues. Can. J .  Phye. 64, 362-368. 
LADA, C. J.  1985 Cold outflows, energetic winds, and enigmatic jets around young stellar objects. 

Ann. Rev. A&. Astrophys. 23,  267-317. 
LANDAU, L. D. 1944 On an exact solution of the Navier-Stokes equations. Dokl. Akad. Nauk. 

SSSR 43, 299-301. 
PAULL, R. & PILLOW, A. F. 1985a Conically similar viscous flows. Part 2. One-parametric swirl- 

free flows. J. Fluid Mech. 155, 343-358. 
PAULL, R. & PILLOW, A. F. 19853 Conically similar viscous flows. Part 3. Characterization of axial 

causes in swirling flows and one-parameter flow generated by a uniform half-line source of 
kinematic swirl angular momentum. J .  Fluid Mech. 155, 35S380. 

Novosibirsk: Institute of Thermophysics, preprint N 159, 50 pp. 

SOC. LO&. A 419, 91-106. 

304, N 5, 1069-1072. 

Features. Novosibirsk : Nauka, 340 pp. 

Phys. 64, 351635. 

17 FLM 218 



508 M .  A .  Goldshtik and V .  N .  Shtern 

PILLOW, A. F. & PAULL, R. 1985 Conically similar viscous flows. Part 1 .  Basic conservation 
principles and characterization of axial c&uses in swirl-free flow. J. Fluid Mech. 155, 327-342. 

SCHLICHTINO, H. 1965 Grenzschicht Themie. Karlsruhe: G. Braun, 742 pp. 
SCHNEIDER, W. 1981 Flow induced by jets and plumes. J. Fluid Mech. 108, 55-65. 
SCHNEIDER, W. 1985 Decay of momentum flux in submerged jets. J. Fluid Mech. 154, 91-110. 
SCHNEIDER, W., ZAUNER, E. & BOHM, H. 1987 The recirculatory flow induced by a laminar 

axisymmetric jet issuing from a wall. Trans. ASME I : J .  Fluids Engng 109, 237-241. 
SERRIN, J .  1972 The swirling vortex. Phil. Trans. R .  SOC. Lond. A 271, 325-360. 
SLEZKIN, N. A. 1934 On a case of integrability of the full differential equations of viscous fluid 

SOZOV, C. 1971 On fluid motions induced by an electric current source. J. Fluid Mech. 46, 25-32. 
SQUIRE, B. 1952 Some viscous fluid flow problems. 1. Je t  emerging from a hole in a plane wall. 

Phil. Mag. 43, 942-945. 
TAYLER, R. J. 1978 Galaxies: Structure and Evolution. London and Basingstoke: Wykeham, 

223 pp. 
VAN DYKE, M. 1975 Perturbation Methods in Fluid Mechnics. Parabolic, 310 pp. 
WANG, C. V. 1971 Effect of spreading of material of the surface of a liquid. Intl J. Nonlinear Mech. 

6, 255-262. 
YATSEEV, V. N. 1950 On a class of exact solutions of the viscous fluid motion equations. Sov. 

YIH, C.-S., Wu, F., GARG, A. K. & LEIBOVICH, S. 1982 Conical vortices: A class of exact solutions 

ZAUNER, E. 1985 Visualization of the viscous flow induced by a round jet. J. Fluid Mech. 154, 

ZUBTSOV, A. V. 1984 On a self-similar solution for weak-swirling jet. Mech. Fluid Gas (Sov.) N4, 

motion. Sci. Pap. Moskow Univ. 2 ,  89-90. 

P h p . ,  J .  EXP. Theor. Phys. 20, 1031-1034. 

of the Navier-Stokes equations. Phys. Fluids 25, 2147-2157. 

11 1- 120. 

45-50. 


